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FOREWORD

This volume of the final report summarizes the analysis
performed on the SSME High Pressure Fuel Turbo-Pump (HPFTP)
Inlet Housing. Three DIAL finite element models were built
to aid in assessing the structural life of the welds and
fillets at the vanes. This analysis was performed by Kirby
V. Pool under Contract NAS8-37282.

Complete results are given; however, some assumptions
were made in determining the maximum surge pressure and in
some weld material properties in the static/fatigue analysis.

Therefore more information is requested for the closure of

this study.

PRECEDING PAGE BLANK NOT FILMED
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1. TINTRODUCTION AND OVERV1EW

The SSME High Pressure Fuel Turbo Pump (HPFTP) contains several compon-
ents that are highly stressed and subject to fatigue from cyclic loading. The
Inlet Housing, which directs the flow of liquid hydrogen into the pump, is of
particular concern because of the detection of cracks in the welded joints
between the torus and the main body of the Inlet Housing (photographs of a sec-
tioned Inlet Housing are shown in Figure 1). Whether these cracks occur as a
result of fatigue loading from previous firings or from residual stresses due
to the initial welding process, they are significant enough to require’weld

repair.

The process of weld repair creates some additional concern with regard to
this part. During the weld repair process, the entire 1nlet Housing is washed
in an acid bath to clean and prepare the surfaces. This acid wash etches the
grain boundaries of the titanium material, creating ﬁotential fatigue crack
initiation sites. The existence of these micro-cracks could lead to a shorter
high-cycle fatigue life for a given level of mean stress and cyclic loading.
The purpose of this analysis was to assess the structural life of the areas

around the welds and in the fillets of the vanes (which guide the flow of
1iquid hydrogen into the impellers).

Three DIAL (Ref. 1) finite element models were built for this analysis. A
simple two-dimensional (2-D) model was constructed and analyzed as a first
order estimate of the relative stress levels in the weld areas and in the
vanes. The second model was a 360° global model, with simplified shell
element vanes included, to determine where, around the circumference, the
stresses are at a maximum. The third model was a detailed 3-D submodel of a
slice of the global model through the region of maximum stress. This submodel

included both of the critical weld areas, the torus shell, and one vane modeled
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in sufficient detail to include the fillets at the vane attachments. The

purpose of this model was to provide more accurate stresses in the critical

weld areas as well as in the vane fillets.

As mentioned earlier, the goal of this analysis was to determine, based
on the stress levels in the regions of concern and on the signal-to-noise (S/N)
curve and Modified Goodman Diagram for the titanium alloy (Ti¥5A;—2.SSn EL1),
what the safe life for the SSME HPFTP Inlet Housing should be. The analysis
predicts stresses in the vicinity of the vane fillets which exceed tﬁe yield
strength of the material at Full Power Level (FPL). Although there appears to
be a fairly comfortable margin of safety with respect to the ultimate elonga-
tion of the material, any appreciable cyclic component to the load will greatly
limit the fatigue life of the part. A nonlinear, plastic analysis of the
hardware should be performed to provide an accurate estimate of the static
stress margin of safety. Furthermore, a detailed study to determine the cyclic

loading environment within the Inlet Housing will be necessary to accurately

assess the fatigue life of this part.
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2. FINITE ELEMENT MODEL DESCRIPTION

This discussion includes the global 3-D model and the detailed vane
submodel. Details of the DIAL 2-D finite element model are given in the March
and April Progress Reports. Since this model was for preliminary analysis

only, details will not be discussed in this Final Report.
2.1 GLOBAL MODEL

Figure 2 is a shaded light source plot of the DIAL global 3-D model of
the HPFTP 1nlet Housing. Figures 3 and 4 are hidden line mesh plots of the
model. Figure 5 shows cutaway views of the main components of the model.
Table 1 lists the model components, providing a count of the number of nodes,
type and number of elements, and the total number of degreés of freedom (DOF).

Note that this model uses linear, hybrid stress solid elements.

Table 1 NODE AND ELEMENT BREAKDOWN FOR HPFTP INLET
HOUSING COMPONENTS (3-D GLOBAL MODEL)

Component | Drawing Number [ Nodes | Elements
q 1 1
3 T T
Inlet Housing | RS007512 | 7651 | 4950 solids
Main Body (360 ) | (Sheets 35,40,41)| |
----------------- [
Torus (0 - 360 ) | RS007512 | 1754 | 660 solids
| (Sheet 36) | | 920 shells]
----------------- e
Support Structure| RS007687 | 153 | 70 solids
| | | 24 shells
_________________ |_---_---_-_._..-._-..- | e e — | —————c e e
Vanes | RS007512 | 494 | 480 shells
| (Sheet 45) | |
T
TOTALS 10052 | 5680 solids
(34980 DOF) | 1424 shells
3
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In several places in the model it was necessary to connect shell elements
to solid elements. Figure 6 is a detail of a typical shell/solid interface
which is designed to transmit moments as well as forces between the solid and
shell elements. This type of interface is found in the torus portion of the
model. The connection of the shell element vanes to the solid elements of the
inner and outer rings (see Figure 4) was accomplished by extending the vane
shell elements into the solid elements a depth of one element (thereby creating

a moment resisting couple). Figure 7 shows this connection more clearly.

The refinement and thicknesses of the vane shell elements in the global
model were established by means of a parametric study which attempted to match
the stiffness of a typical "shell element" vane to that of the "solid element"
vane in the detailed submodel. (The July Progress Report covers this study in

detail.) Figure 8 depicts the final configuration for the global model vanes.

The DIAL runstream which generated the global model is included in

Appendix A.
2.2 DETAILED VANE SUBMODEL

Plots of the detailed vane submodel are shown in Figures 9 through 11
(Figures 9a and 9B are light source shaded plots). The submodel comprises

8553 nodes, 1394 parabolic solid elements, and 286 parabolic shell elements,
and has a total of 28446 DOF. The vane and fillets were modeled as accurately

as possible, based on the dimensions provided in drawing number RS007512-131.
A sensitivity study was performed which varied the element refinement in the
fillets. The results discussed in the August Progress Report showed that the

mesh density was adequate.

The DTAL runstream which generated the detailed vane submodel is included

in Appendix B.

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



LMSC-HEC TR F268584--1IV

3. BOUNDARY CONDITIONS AND EXTERNAL LOADS

In the early phase of this analysis the loading on the Inlet Housing con-
sisted solely of internal pressure within the torus. The pressure used (178
psid) was a nominal pressure supplied by engineers at the Huntsville Engiheer—
ing Center (HEC). A package containing more realistic loads for the Inlet
Housing, prepared by J. Chaffin of Rocketdyne (Ref. 2), was received by HEC
and forwarded to LMSC, Sunnyvale, the week of 22 July 1988. Figure 12 is a
schematic diagram of the FPL loading which was used for this final analysis.
As can be seen in the figure, the 178 psid was increased to 303 psid. The
maximum value for these loads in a surge condition is not conclusively known.
For the purpose of this analysis, a 10% alternating pressure component was

assumed.

The boundary conditions for the global model were simply a fixity of all
translations at the location where the Inlet Housing is bolted to the main
body of the pump. The support structure (to which the Hydrogen Inlet Manifold

is bolted) was not restrained in any way.

The loading on the detailed vane submodel consisted of applied displace-
ments along the boundaries of the submodel and pressure loads, to match the
values depicted in Figure 12 for the global model (303 psi internal pressure
and 208 psi external back pressure). The applied displacements were obtained
from the global model through an automated process in the DIAL finite element
code. Figure 13 shows the detailed vane submodel (the torus is removed for
clarity) with the surfaces to which the displacement boundary conditions are
applied. As can be seen from the figure, displacements were applied on each
radial cut surface (at 24° and -30°) as well as on the two circumferential cut
surfaces of the submodel. Since the circumferential cut surfaces lie directly

behind the vane attachments, it is clear that the displacements applied to
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these surfaces will have, by far, the largest effect on the stresses in the
vane and fillets. Figures 1l4a and 14b show the applied displacement vectors

on either end of the submodel torus.

The displacements applied to the boundaries of the submodel were compared
manually with the displacements of the global model (at the same locations) as
a check on the automated process mentioned above. The displacements were con-

tinuous and smooth, and no discrepancies were found.

The submodel, which contains one vane, required a span of 54° to assure
that there was sufficient distance between the ends of the vane and the model
boundaries. However, since the Inlet Housing has 15 vanes around the circum-
ference, the average span per vane is really 24°. This means that there is a
significant overlap between the vanes which is not accounted for in the sub-
model (see phantom lines in Figure 13). The fact that the submodel does not
include the portions of the other vanes that would exist in a 54° segment does
not significantly affect the accuracy of the results, though. The reason for
this is that the applied displacements (which completely dominate the loading)
are obtained from the global model, in which there is a vane every 24°. If
the displacements are correct, then the loading into the vane should be

correct.

One effect of the larger span is an increased surface area for the
applied pressure to act upon. The increase in vane stresses due to this
additional pressure load is very small because the applied displacements are

the major contributor to the stresses in the vane.

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



LMSC-HEC TR F268584--1IV

4. MATERTAL PROPERTIES

The material used for the HPFTP Inlet Housing is Ti-5A1-2.5Sn ELI. All
material property information was obtained from the Rocketdyne Materials
Properties Manual (Ref. 3) for a temperature of -350 °F. Figures 15 through 18
show excerpts from the Rocketdyne manual for a stress/strain curve (typical
values are shown), a high-cycle fatigue S/N curve, a Modified Goodman Diagram

(for a machined surface), and a low-cycle fatigue diagram.
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5. STRUCTURAL ANALYSIS

Several iterations were made to improve and validate both the 360° global
model and the detailed vane submodel. These iterations are documented in

detail in prior Progress Reports and therefore will not be discussed here.

5.1 APPROACH

At the onset of this analysis, it was determined that two models (a 360°
global model of the entire Inlet Housing and a detailed submodel of a single
vane) would be necessary to adequately assess this geometrically complex

part. The global model served three purposes:

e Prediction of the location of the highest vane stresses

e Displacement boundary conditions for the detailed vane
submodel analysis

o A first order prediction of stresses in the critical weld
areas where the torus is attached to the Inlet Housing
main body.

The purpose of the detailed vane submodel was to achieve accurate
modeling of the critical weld areas and a vane (complete with fillets). Both

of these models were needed to assess the capability of this part to withstand

the required environment.
5.2 RESULTS
5.2.1 Global Model

The primary purpose of the global model was to provide displacement
boundary conditions for the detailed vane submodel. The stresses are not

considered to be accurate, but they are presented here for completeness.
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Figure 19 is an effective stress contour plot of the outer ring (from
inside the ring looking out) due to FPL loading. Note that there is cleérly a
region where the stress appears to be the greatest. This maximum (~ 90 ksi)
occurs at the location where the torus diameter is a maximum (near vane 1).
This is logical, when one considers that the stress in a cylinder with internal
pressure varies in direct proportion with the radius of that cylinder. Figure
20 shows the effective stress in the inner ring (from outside the ring looking
in) at FPL. WNote, again, that the stress varies along the circumference, with
the maximum (85 ksi) occurring at the maximum torus diameter location. The .
weld area on the inner ring (weld 1) is indicated by the dashed line. Because
this weld is smooth, with no stress concentrations, the stress here is onl}
about 55 ksi. Figure 21 shows the computed effective strain in vane 1 (at the
maximum torus diameter). This also varies as a function of circumferential

position.
5.2.2 Detailed Vane Submodel

Based on the results of the global model, the vane closest to the torus
maximum diameter was selected to be modeled in the detéiled vane submodel.
Figure 22 is a color contour plot of the inside (where pressure is applied)
surfaces of both the inner and outer rings and the vane. The areas of
particularly high stress are clearly shown to be the fillets of the vane and
the weld 2 (outer ring) area. Figures 23 and 24 show line contour plots of
the effective stresses (for FPL loading) on the inner ring non-pressure and
pressure surfaces, respectively. Figure 25 shows the same for the outer ring
pressure (inside) surface. The maximum value for effective stress in the inner
ring is 119 ksi (Figure 23), and in the weld 1 area (Figure 24) it becomes ~
90 ksi. The maximum effective stress in the outer ring occurs in the weld 2
area and peaks at a value of ~ 160 ksi. Please note that the areas near the
boundaries where there appear to be extremely high stresses are of no concern.
These high stresses are products of the applied displacements and die out very

quickly.
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Figure 26 shows the effective stress in the vane submodel (the torus is
removed for clarity) at FPL loading. The maximum effective stress of 237 ksi
oécurs in the fillets at the leading edge of the vane. This stress value,
which exceeds the ultimate stress capability of the material (Sy = 154 ksi,

Su = 163 ksi - see Figure 15), is not accurate since it was computed assuming
linear elastic material response. Figure 26 shows that the maximum effective
st.rain for this linear analysis is 1.37%. The ultimate elongation for the
material, according to the Rocketdyne Materials Properties Manual (Ref. 3), is
on the order of 15%. The yielding in the vane fillet is extremely localized
in the high.stress concentration area of the fillet region. 1In reality (or in
a nonlinear analysis), any yielding will allow the load to redistribute and
therefore keep the plastic strain low and the margin of safety for the static
load condition fairly high. There is little doubt, however, that the stresses
in the vane fillet at FPL loading are at or above yield. This directly

affects the fatigue life of the HPFTP Inlet Housing.

The current assumption with regard to fatigue life assessment is that the
alternating load is 10% of the mean loading. Using this assumption, and
looking at the Modified Goodman Diagram in Figure 17; it is clear that the
weld 1 area (effective stress is 90 ksi) should withstand 10,000,000 cycles of
loading. 1t is equally clear that the fatigue life of the HPFTP Inlet Housing
vanes (effective stress, 237 ksi) and of the weld 2 area (effective stress,

160 ksi) will be extremely limited, possibly to the point of creating low-cycle
fatigue problems. Since fatigue failures in the vanes are not common, the
cyclic loading environment is apparently not nearly as severe as was assumed

here.

10
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6. SUMMARY

Table 2 is a summary of the results, for nominal and FPL loading, for
both of the models used in this analysis. Overall, the effective stresses in
the detailed vane submodel are about 40 to 78% higher than those predicted in
the global model. This is most likely due to the coarseness of the 3-D global
model mesh (which also used linear instead of parabolic solid elements).

Note that a direct comparison of the stresses between the two models should
not be made, since the global model's purpose was primarily to provide input
for the detailed vane submodel. A comparison of average effective stress was
made near the center of the critical vane for both models. The correlation

here for the FPL loading is fairly good.

Table 2 HPFTP Inlet Housing Stress Analysis - Summary of Results

Model (load case) Weld 1 Weld 2 Vane Center of
Inner Ring]Outer Ring] Fillet Vane 1
Global (NPL) | | |
Eff-Stress (kst) 32 | 53 | -- | ~20
S S b ———— - ——— frmcmmm—————
Global (FPL) - | | |
Eff-Stress (ksi) 55 | 90 | -- | ~30
————————————————————————————— LT T T S R UR Y, e ———
Detailed Vane (NPL) 53 | 94 | | ~20
Eff-Stress (ksi) (+1.9)' | (+.64) | -- |
----------------------------- s Sy ALy S
Detailed Vane (FPL) 90 | 160 | 237 | ~30
Eff-Stress (ksi) (+.71) | (-0.04)* | (-.35)= |

NOTES: NPL - Nominal Pressure Level - 189 psid internal torus pressure.

FPL - Full Power Level - 303 psid internal torus pressure.

! - Numbers in parentheses are Static Margins of Safety based
on a 1.0 Factor of Safety and Sy = 154 ksi.

* - These margins are the result of a linear analysis. A non-
linear plastic analysis would most likely produce positive
margins based on the maximum strain allowable of 15% (237
ksi corresponds to effective strain of 1.37%).

1
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Static margins of safety for the FPL loading, based on a 1.0 Factor of
Safety and a yield stress of 154 ksi, are included where the stress remains in
the linear range. 1In the fillets of the vanes, where yielding occurs, only a

nonlinear plastic analysis can provide a reliable margin.

An accurate assessment of the fatigue life of the HPFTP Inlet Housing -
requires a knowledge of the cyclic loading environment (includiﬁg both
magnitude and period of the loading), as well as an S/N curve and Modified
Goodman Diagram for the pfoper material with the proper surface finish. Given
the magnitude of the stresses predicted here, a low-cycle fatigue curve (for
the proper R of +0.90) would also be helpful. Since these data do not yct
exist, or at least they have not yet been provided, all that can be stated

conclusively is that a concern for the fatigue life of this part does exist.

12
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7. RECOMMENDATIONS

1f it is true, as the results of this analysis show, that the vane
fillets are stressed to nearly 1.5 times the stress level in the welds, then
one must ask why there have been cracks reported in the welds but not in the
fillets of the vanes. Apparently, either the material properties in the weld
are very different from the wrought material in the vanes, or there is some
aspect of the loading that is not being treated properly. Several missing

pieces of information are essential to the closure of this study:

. Material data for the weld material are needed in the form of a stress-

strain curve, an S/N curve, a Modified Goodman Diagram for the proper
heat-treat (annealed?), temperature (-350 °F), and surface conditions
(chem milled?). The titanium in the weld material is a '"cast" micro-
structure as opposed to a "wrought"” microstructure for the vanes.
Consequently, it is very possible, even likely, that their fatlgue
characteristics would be very different.

. Measure pressure data are needed to verify the cyclic component of the

load. The loading environment given for this problem assumes that the
cyclic component of the load is 10% of the mean value. If it can be
shown to be significantly smaller than this in the vane fillet, the
loading can be regarded as static and the life of the vane fillet would
be determined by low-cycle fatigue, where the number of cycles is the
number of engine firings.

. Data on the effect of cyclic loading with plastic prestrain are needed

to predict the life of the vane fillet if the cyclic component of the
loading is in fact significant.

. A nonlinear plastic analysis is needed to determine the level of

plastic strain in the vane fillet. This knowledge can be used to
determine the static margin of safety and assess the low-cycle fatigue
capability of the part, given the data in item 3 above.

13
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ORIGINAL PAGE
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Figure 1 Polaroid Photographs of Cut-Up HPFTP Inlet Housing
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Figure 2 HPFTP Inlet Housing - DIAL Global Finite ELement Model
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Figure 5 HPFTP Inlet Housing - DIAL Global Finite Element Model

Exploded View Showing Model Components
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IMPROVED INLET HOUSING 3D GLOBAL MODEL

VANE 1 - Solid/Shel
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COLOR PHOTOGRAPH

LMSC-HEC TR F268584-IV

SSME HPFTP DETAIL VANE MODEL WITH TORUS
LIGHT SOURTE SHADING PO

SSME HPFTP DETAIL VANE MODEL WITH TORUS =2
LIGHT SOURCE THADIMNG PLOT

Figure 9(a,b)

HPFTP Inlet Housing - DIAL Detailed Vane Submodel
(Color Light Source Shading Plot)
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ORIGINAL PAGE IS
OF POOR QUALITY LMSC-HEC TR F268584-IV

SSME HPFTP NEW DETAILED VANE MODEL VA1PLT

SSME HPFTP NEW DETAILED VANE MODEL Va1PLT
APPLIED DISPLACEMENTS AT THE SMARLER DIAMETER SIDE (-3@ DEG.)

Figure 14(a,b) HPFTP Inlet Housing - DIAL Detailed Vane Submodel
Applied Displacement Vectors from Global Model (Torus)
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Figure 22 HPFTP Inlet Housing - Detailed Vane Submodel - Effective
Stress Color Contour Plot of Vane and Ring Intersections
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- Detailed Vane Submodel - Effective
and Fillet

ng
Contour Plot of Vane

Figure 26 HPFTP Inlet Housi
Stress
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